
VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

 4-1

Chapter 4—Techniques

his chapter presents Verification and Validation (V&V) techniques and provides
guidelines for their use. Seventy-six V&V techniques and eighteen statistical
techniques that can be used for model validation are described. Most of these

techniques are derived from software engineering; the remaining are specific to the
modeling and simulation field. The selected software V&V techniques applicable to
Modeling and Simulation (M&S) V&V are presented in terms understandable by an M&S
technical person. Some software V&V techniques are modified for use in M&S V&V. The
term testing is used frequently in this chapter in referring to the implementation of these
techniques. V&V requires the testing of the model or simulation to assess its credibility.
Finally, where possible, supporting texts are referenced so that more detailed descriptions
of the techniques may be obtained by the interested reader.

4.1 Verification and Validation Techniques

igure 4-1 shows a taxonomy that lists V&V techniques in four categories: informal,
static, dynamic, and formal. The use of mathematical and logical formalism in each
category increases from informal to formal, from left to right. The complexity also

increases as the category becomes more formal.

It should be noted that some of the categories presented in Figure 4-1 possess similar
characteristics and, in fact, include techniques that overlap from one category to another.
A distinct difference between each classification exists, however, as will be evident in the
discussion.

4.1.1 Informal V&V Techniques

Informal techniques are among the most commonly used. They are called informal because
their tools and approaches rely heavily on human reasoning and subjectivity without
stringent mathematical formalism. The informal label does not imply, however, a lack of
structure or formal guidelines in their use. In fact, these techniques are applied using well-
structured approaches under formal guidelines, and they can be very effective if employed
properly.

T

F

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

 4-2

Verification and Validation
Techniques

Acceptance Testing
Alpha Testing
Assertion Checking
Beta Testing
Bottom-Up Testing
Comparison Testing
Compliance Testing

Authorization
Performance
Security
Standards

Debugging
Execution Testing

Monitoring
Profiling
Tracing

Fault/Failure Insertion Testing
Field Testing
Functional (Black-Box) Testing
Graphical Comparisons
Interface Testing

Data
Model
User

Object-Flow Testing
Partition Testing
Predictive Validation
Product Testing
Regression Testing
Sensitivity Analysis
Special Input Testing

Boundary Value
Equivalence Partitioning
Extreme Input
Invalid Input
Real-Time Input
Self-Driven Input
Stress
Trace-Driven Input

Statistical Techniques
Structural (White-Box)
TestingBranch

Condition
Data Flow
Loop
Path
Statement

Submodel/Module Testing
Symbolic Debugging
Top-Down Testing
Visualization/Animation

Audit
Desk Checking
Face Validation
Inspections
Reviews
Turing Test
Walkthroughs

Induction
Inference
Logical Deduction
Inductive Assertions
CalculusLambda Calculus
Predicate Calculus
Predicate Transformation
Proof of Correctness

Cause-Effect Graphing
Control Analysis

Calling Structure
Concurrent Process
Control Flow
State Transition

Data Analysis
Data Dependency
Data Flow

Fault/Failure Analysis
Interface Analysis

Model Interface
User Interface

Semantic Analysis
Structural Analysis
Symbolic Evaluation
Syntax Analysis
Traceability Assessment

Informal Static Dynamic Formal

Figure 4-1. A Taxonomy of Verification and Validation Techniques

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

 4-3

4.1.1.1 Audit

An audit is undertaken to assess how adequately the application of M&S is conducted
with respect to established plans, policies, procedures, standards, and guidelines. The
audit also seeks to establish traceability within the simulation. When an error is identified,
it should be traceable to its source via its audit trail. The process of documenting and
retaining sufficient evidence about the substantiation of accuracy is called an audit trail
(Perry, 1995).

Auditing is carried out periodically through a mixture of meetings, observations, and
examinations (Hollocker, 1987). Audit is a staff function and serves as the "eyes and ears
of management" (Perry, 1995, p. 26). In Verification, Validation, and Accreditation
(VV&A), auditing is performed by the VV&A agent throughout the development life
cycle for a new model or simulation or during modifications made to legacy models and
simulations.

4.1.1.2 Desk Checking

Desk checking (also called self-inspection) is the process of intensely examining work to
ensure its correctness, completeness, consistency, and clarity. It is considered to be the
very first step in V&V and is particularly useful for the early stages of development. To
be effective, desk checking should be conducted carefully and thoroughly, preferably by
another person, because it is usually difficult to see one’s own errors (Adrion et al.,
1982). Syntax review, cross-reference examination, convention violation assessment,
detailed comparison to specifications, code reading, control flowgraph analysis, and path
sensitizing are all be conducted as part of desk checking (Beizer, 1990).

4.1.1.3 Face Validation

The project team members, potential users of the model, and people knowledgeable about
the system of interest use their estimates and intuition to compare model and system
behaviors subjectively under identical input conditions and judge whether the model and
its results are reasonable (Hermann, 1967).

This technique is regularly cited in V&V efforts within DoD. It is one of the terms and
techniques most commonly misused. Face validation is useful mostly as a preliminary

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

 4-4

approach to validation in the early stages of development. Except for a model that is
mature and has an extensive, well-documented VV&A history, viable V&V efforts
generally must use additional techniques.

4.1.1.4 Inspections

A team with four to six members inspects any M&S development phase such as M&S
requirements definition, conceptual model design, or M&S detailed design. To inspect
M&S design, for example, the team might consist of a moderator who manages the
inspection team and provides leadership; a reader who narrates the M&S design and leads
the team through the inspection process; a recorder who produces a written report of
detected faults; a designer who represents the design developer; an implementer who
translates the M&S design into an executable form; and a VV&A agent.

An inspection goes through five distinct phases: overview, preparation, inspection,
rework, and follow-up (Schach, 1996). In Phase I, the designer summarizes the M&S
design to be inspected. Characteristics such as problem definition, application
requirements, and the specifics of software design are introduced and related
documentation is distributed to all participants to study. In Phase II, the team members
prepare individually for the inspection by examining the documents in detail. The success
of the inspection rests heavily on the conscientiousness of the team members in their
preparation. The moderator arranges the inspection meeting with an established agenda
and chairs it in Phase III. The reader narrates the M&S design documentation and leads
the team through the inspection process. The inspection team is aided during the fault-
finding process by a checklist of queries. The objective is to find and document the faults,
not to correct them. The recorder prepares a report of detected faults immediately after
the meeting. In Phase IV, the designer resolves all faults and problems identified in the
report. In the final phase, the moderator ensures that all faults and problems have been
resolved satisfactorily. All changes must be examined carefully to ensure that no new
errors have been introduced as a result of a fix.

Inspections have major differences from walkthroughs, described in Section 4.1.1.7.
Briefly, a walkthrough is less formal, has fewer steps, and does not use a checklist to
guide or a written report to document the team’s work. By comparison, an inspection is a
five-step, formalized process. The inspection team uses the checklist approach for
uncovering errors. The inspection process takes much longer than a walkthrough;
however, the extra time is justified because an inspection is a powerful and cost-effective

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

 4-5

way of detecting faults early in the M&S development life cycle (Ackerman et al., 1983;
Beizer, 1990; Dobbins, 1987; Knight and Myers, 1993; Perry, 1995; Schach, 1996).

4.1.1.5 Reviews

The review is conducted similar to the inspection and walkthrough, except that the review
team also involves managers. The review is intended to give management, such as the
M&S proponent or the M&S application sponsor, evidence that the M&S development
process is being carried out according to stated application objectives and to evaluate the
model or simulation in light of development standards, guidelines, and specifications. As
such, the review is a higher level technique than the inspection or walkthrough.

Each review team member examines the M&S documentation before the review. (Given
the management positions of the team members, documentation needs to be less technical
and more oversight-oriented than in an inspection. There also must be less material to
examine if the V&V agent expects the team to prepare satisfactorily for the review.) The
team then meets to evaluate the model or simulation relative to specifications and
standards, recording defects and deficiencies. The review team may be given a set of
indicators to measure such as (a) appropriateness of the problem definition and M&S
requirements, (b) adequacy of all underlying assumptions, (c) adherence to standards, (d)
modeling methodology used, (e) model representation quality, (f) model structure, (g)
model consistency, (h) model completeness, and (i) documentation. (A checklist prepared
by the V&V agent [not the developer!] is particularly useful in focusing management on
the key points and in guiding the review.) The result of the review is a document
portraying the events of the meeting, deficiencies identified, and review team
recommendations. Appropriate action then may be taken to correct any deficiencies.

As opposed to inspections and walkthroughs, which concentrate on assessing
correctness, reviews seek to ascertain that tolerable levels of quality are being attained.
The review team is more concerned with model or simulation design deficiencies and
deviations from stated model or simulation development policy than it is with the
intricate line-by-line details of the implementation. This does not imply that the review
team is not concerned with discovering technical flaws in the model or simulation, only
that the review process is oriented toward the early stages of the M&S development life
cycle (Hollocker, 1987; Perry, 1995; Sommerville, 1996; Whitner and Balci, 1989).

4.1.1.6 Turing Test

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

 4-6

Turing test is based upon the expert knowledge of people about the system of interest.
The experts are presented with two sets of output data, one obtained from the model and
one from the system, under the same input conditions. Without identifying the data set,
the experts are asked to differentiate between the two. If they succeed, they are asked to
describe the differences. Their response provides valuable feedback for correcting model
representation. If they cannot differentiate between the two, confidence in the model’s
validity is increased (Schruben, 1980; Turing, 1963; Van Horn, 1971).

4.1.1.7 Walkthroughs

A typical structured walkthrough team consists of a coordinator, often the V&V agent,
who organizes, moderates, and follows up the walkthrough activities; a presenter, who is
usually the model or simulation developer; a scribe who documents the events of the
walkthrough meetings; a maintenance oracle who focuses on long-term implications; a
standards bearer who assesses adherence to standards; the accreditation agent who reflects
the needs and concerns of the accrediting authority; and other reviewers such as the model
or simulation project manager and auditors. Except for the model or simulation developer,
none of the team members should be involved directly in the development effort.

The main thrust of the walkthrough is to detect and document faults; it is not performance
appraisal of the development team. This point must be made to everyone involved so that
full cooperation is achieved in discovering errors.

The coordinator schedules the walkthrough meeting, distributes the walkthrough material
to all participants well in advance to allow for careful preparation (again, critical to the
success of the effort!), and chairs the meeting. During the meeting, the presenter narrates
the walkthrough documents. (The V&V agent may wish to ascertain the level of
preparation of the team members at the beginning of the meeting to ensure that materials
have been read beforehand and that team members are not relying on the presenter’s
walkthrough of the material to obtain the information and insight needed for a meaningful
discussion.) The coordinator encourages questions and discussion to uncover any faults
(Adrion et al., 1982; Deutsch, 1982; Myers, 1978, 1979; Yourdon, 1985).

The reader is encouraged to re-read Sections 4.1.1.4 and 4.1.1.5 on inspections and
reviews to ensure a full understanding of the differences among these three techniques.

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

 4-7

4.1.2 Static V&V Techniques

Static V&V techniques assess the accuracy of the static model design and source code.
Static techniques do not require machine execution of the model, but mental execution can
be used. The techniques are very popular and widely used, and many automated tools are
available to assist in the V&V process. The simulation language compiler is itself a static
V&V tool.

Static V&V techniques can reveal a variety of information about the structure of the
model, the modeling techniques used, data and control flow within the model, and
syntactical accuracy (Whitner and Balci, 1989).

4.1.2.1 Cause-Effect Graphing

Cause-effect graphing addresses the question of what causes what in the model
representation. It first identifies causes and effects in the system being modeled and then
examines their representation in the model specification. For example, in the simulation of
a traffic intersection, the following causes and effects may be identified: (a) the change of
a light to red immediately causes the vehicles in the traffic lane to stop, (b) an increase in
the duration of a green light causes a decrease in the average waiting time of vehicles in the
traffic lane, and (c) an increase in the arrival rate of vehicles causes an increase in the
average number of vehicles at the intersection.

As many causes and effects as possible are listed, and the semantics are expressed in a
cause-effect graph. The graph is annotated to describe special conditions or impossible
situations. Once the cause-effect graph has been constructed, a decision table is created by
tracing back through the graph to determine combinations of causes that result in each
effect. The decision table then is converted into test cases with which the model is tested
(Myers, 1979; Pressman, 1996; Whitner and Balci, 1989).

4.1.2.2 Control Analysis

Control analysis techniques consist of calling structure analysis, concurrent process
analysis, control flow analysis, and state transition analysis.

Calling structure analysis is used to assess model accuracy by identifying who calls
whom and who is called by whom. The who could be a procedure, subroutine, function,

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

 4-8

method, or a submodel within a model. For example, inaccuracies caused by message
passing (e.g., sending a message to a nonexistent object) in an object-oriented model can be
revealed by analyzing the specific messages that invoke an action and the actions that
messages invoke (Miller et al., 1995).

Concurrent process analysis is especially useful for parallel (Fujimoto, 1990, 1993;
Page and Nance, 1994) and distributed simulations. If a simulation executes on a single
computer with a single processor (CPU), it is referred to as a serial (sequential)
simulation. If a single computer with multiple processors is used to execute the simulation
model, then the simulation is said to be a parallel simulation. If multiple single-processor
computers are used to execute the simulation model, then the simulation is said to be a
distributed simulation.

Model accuracy is assessed by analyzing the overlap or simultaneous execution of actions
executed in parallel or across distributed simulations. Such analysis can reveal
synchronization and time management problems (Rattray, 1990).

Control flow analysis requires the graphing of the model, in which conditional branches
and model junctions are represented by nodes and the model segments between such
nodes are represented by links (Beizer, 1990). A node of the model graph usually
represents a logical junction where the flow of control changes, whereas an edge
represents the junction that assumes control. This technique examines sequences of
control transfers and is useful for identifying incorrect or inefficient constructs within
model representation.

State transition analysis identifies the finite number of states through which the model
execution passes. A state transition diagram, which shows how the model transitions
from one state to another, is created. Model accuracy is assessed by analyzing the
conditions under which a state change occurs. This technique is especially effective for
those M&S applications created under the activity scanning, three-phase, and process
interaction conceptual frameworks (Balci, 1988).

4.1.2.3 Data Analysis

The data analysis category of V&V techniques consists of Data Dependency Analysis
and Data Flow Analysis. These techniques are used to ensure that (a) proper operations
are applied to data objects (e.g., data structures, event lists, linked lists), (b) the data used

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

 4-9

by the model are properly defined, and (c) the defined data are properly used (Perry,
1995).

Data dependency analysis determines which variables depend on other variables (Dunn,
1984). For parallel and distributed simulations, the data dependency knowledge is critical
for assessing the accuracy of synchronization across multiple processors.

Data flow analysis assesses model accuracy with respect to the use of model variables.
This assessment is classified according to the definition, referencing, and unreferencing of
variables (Adrion et al., 1982), i.e., when variable space is allocated, accessed, and
deallocated. A data flowgraph is constructed to aid in the data flow analysis. The nodes of
the graph represent statements and corresponding variables. The edges represent control
flow.

Data flow analysis can be used to detect undefined or unreferenced variables (much as in
static analysis) and, when aided by model instrumentation, can track minimum and
maximum variable values, data dependencies, and data transformations during model
execution. It is also useful in detecting inconsistencies in data structure declaration and
improper linkages among submodels or federates (Allen and Cocke, 1976; Whitner and
Balci, 1989).

4.1.2.4 Fault/Failure Analysis

Fault (incorrect model component) and failure (incorrect behavior of a model component)
analysis uses model input-output transformation descriptions to identify how the model
logically might fail. The model design specification is examined to determine if any failures
logically could occur, in what context, and under what conditions. Such examinations
often lead to identification of model defects (Miller et al., 1995).

4.1.2.5 Interface Analysis

Interface analysis consists of model interface analysis and user interface analysis. These
techniques are especially useful for verification and validation of interactive and
distributed simulations.

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

 4-10

Model interface analysis examines submodel-to-submodel interfaces within a model, or
federate-to-federate interfaces within a federation, and determines if the interface structure
and behavior are sufficiently accurate.

User interface analysis examines the user-model interface and determines if it is human
engineered to prevent errors during the user’s interactions with the model. It also assesses
how accurately this interface is integrated into the overall model or simulation.

4.1.2.6 Semantic Analysis

Semantic analysis is conducted by the simulation programming language compiler and
determines the modeler's intent as reflected by the code. The compiler describes the
content of the source code so the modeler can verify that the original intent is reflected
accurately.

The compiler generates a wealth of information to help the modeler determine if the true
intent is translated accurately into the executable code: (a) symbol tables, which describe
the elements or symbols that are manipulated in the model, function declarations, type
and variable declarations, scoping relationships, interfaces, and dependencies; (b) cross-
reference tables, which describe called versus calling routines (where each data element is
declared, referenced, and altered), duplicate data declarations (how often and where
occurring), and unreferenced source code; (c) subroutine interface tables, which describe
the actual interfaces of the caller and the called; (d) maps, which relate the generated
runtime code to the original source code; and (e) pretty printers or source code formatters,
which reformat the source listing on the basis of its syntax and semantics, clean
pagination, highlighting of data elements, and marking of nested control structures
(Whitner and Balci, 1989).

4.1.2.7 Structural Analysis

Structural analysis examines the model structure and determines if it adheres to structure
principles. It is conducted by constructing a control flowgraph of the model structure and
examining the graph for anomalies, such as multiple entry and exit points, excessive levels
of nesting within a structure, and questionable practices such as the use of unconditional
branches (i.e., GOTOs).

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

 4-11

Yucesan and Jacobson (1992, 1996) apply the theory of computational complexity and
show that the problem of verifying structural properties of M&S applications is difficult
to solve. They illustrate that modeling issues such as accessibility of states, ordering of
events, ambiguity of model specifications, and execution stalling are problems for which
general design techniques do not produce efficient solutions.

4.1.2.8 Symbolic Evaluation

Symbolic evaluation assesses model accuracy by exercising the model using symbolic
values rather than actual data values for input. It is performed by feeding symbolic inputs
into the submodel or federate and producing expressions for the output that are derived
from the transformation of the symbolic data along model execution paths. Consider, for
example, the following function:

function jobArrivalTime(arrivalRate,currentClock,randomNumber)
lag = -10
Y = lag * currentClock
Z = 3 * Y
if Z < 0 then

arrivalTime = currentClock – log(randomNumber) /
arrivalRate

else
arrivalTime = Z – log(randomNumber) / arrivalRate

end if
return arrivalTime

end jobArrivalTime

In symbolic execution, lag is substituted in Y resulting in Y = (–10*currentClock).
Substituting again, Z is found to be equal to (–30*currentClock). Since currentClock
is always zero or positive, an error is detected in that Z will never be greater than zero,
and the “if-then-else” statement is unnecessary.

When unresolved conditional branches are encountered, a path is chosen to traverse. Once
a path is selected, execution continues down the new path. At some point, the execution
evaluation will return to the branch point and the previously unselected branch will be
traversed. All paths eventually are taken.

The result of the execution can be represented graphically as a symbolic execution tree
(Adrion et al., 1982; King, 1976). The branches of the tree correspond to the paths of the

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

 4-12

model. Each node of the tree represents a decision point in the model and is labeled with
the symbolic values of data at that juncture. The leaves of the tree are complete paths
through the model and depict the symbolic output produced.

Symbolic evaluation assists in showing path correctness for all computations regardless of
test data and is also a great source of documentation, but it has the following
disadvantages: (a) the execution tree can explode in size and become too complex as the
model grows; (b) loops cause difficulties although inductive reasoning and constraint
analysis may help; (c) loops make thorough execution impossible because all paths must
be traversed; and (d) complex data structures may have to be excluded because of
difficulties in symbolically representing particular data elements within the structure
(Dillon, 1990; King, 1976; Ramamoorthy et al., 1976).

4.1.2.9 Syntax Analysis

Syntax analysis is carried on by the simulation programming language compiler to ensure
that the mechanics of the language are applied correctly (Beizer, 1990).

4.1.2.10 Traceability Assessment

Traceability assessment is used to match, one to one, the elements of one form of the
model to another. For example, the elements of the system as described in the
requirements specification are matched one to one to the elements of the model or
simulation design specification. Unmatched elements may reveal either unfulfilled
requirements or unintended design functions (Miller et al., 1995).

4.1.3 Dynamic V&V Techniques

Dynamic V&V techniques require model execution; they evaluate the model based on its
execution behavior. Most dynamic V&V techniques require model instrumentation, the
insertion of additional code (probes or stubs) into the executable model to collect
information about model behavior during execution. Probe locations are determined
manually or automatically based on static analysis of the model’s structure. Automated
instrumentation is accomplished by a preprocessor that analyzes the model’s static
structure (usually via graph-based analysis) and inserts probes at appropriate places.

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

 4-13

Dynamic V&V techniques usually are applied in three steps. In Step 1, the executable
model is instrumented. In Step 2, the instrumented model is executed; in Step 3, the model
output is analyzed and dynamic model behavior is evaluated.

For example, consider the worldwide air traffic control and satellite communication
object-oriented visual M&S application created by using the Visual Simulation
Environment (Balci et al., 1995) in Figure 4-2. The model can be instrumented in Step 1 to
record the following information every time an aircraft enters into the coverage area of a
satellite: (a) aircraft tail number; (b) time; (c) aircraft’s longitude, latitude, and altitude;
and (d) satellite’s position and identification number. In Step 2, the model is executed and
the information collected is written to an output file. In Step 3, the output file is examined
to reveal discrepancies and inaccuracies in model representation.

4.1.3.1 Acceptance Testing

Acceptance testing is conducted by either the M&S application sponsor and the
sponsor’s VV&A agents or the developer’s quality control group in the presence of the
sponsor’s representatives. The model is operationally tested with the actual hardware and
data to determine whether all requirements specified in the legal contract are satisfied
(Perry, 1995; Schach, 1996).

4.1.3.2 Alpha Testing

Alpha testing is the operational testing of the initial version of the complete model by the
developer at an in-house site uninvolved with the model development (Beizer, 1990).

4.1.3.3 Assertion Checking

An assertion is a statement that should hold true as the simulation executes. Assertion
checking is a verification technique that checks what is happening against what the
modeler assumes is happening to guard against potential errors. The assertions are placed
in various parts of the model to monitor execution. They can be inserted to hold true
globally, for the whole model; regionally, for some submodels; locally, within a submodel;
or at entry and exit of a submodel.

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

 4-14

Figure 4-2. Visual Simulation of Global Air Traffic Control and Satellite
Communication. (Reprinted from Balci et al., 1995.)

Consider, for example, the following pseudo-code (Whitner and Balci, 1989):

Base := Hours * PayRate;
Gross := Base * (1 + BonusRate);

In just these two simple statements, several assumptions are being made. It is assumed
that Hours, PayRate, Base, BonusRate, and Gross are all non-negative. The following
asserted code can be used to prevent execution errors caused by incorrect values entered
by the user:

Assert Local (Hours > 0 and PayRate > 0 and BonusRate > 0);
Base := Hours * PayRate;
Gross := Base * (1 + BonusRate).

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

 4-15

Assertion checking also prevents structural model inaccuracies. For example, the model in
Figure 4-2 can contain assertions such as (a) a satellite communicates with the correct
ground station, (b) an aircraft’s tail number matches its type, and (c) an aircraft’s flight
path is consistent with the official airline guide.

Clearly, assertion checking serves two important needs: (a) it verifies that the model is
functioning within its acceptable domain, and (b) the assertion statement documents the
intentions of the modeler. Assertion checking, however, degrades model performance,
forcing the modeler to choose between execution efficiency and accuracy. If the execution
performance is critical, the assertions should be turned off but kept permanently in code
to provide both documentation and means for maintenance testing (Adrion et al., 1982).

4.1.3.4 Beta Testing

Beta testing refers to the developer’s operational testing of the first-release version of the
complete model at a beta user site under realistic field conditions (Miller et al., 1995).

4.1.3.5 Bottom-Up Testing

Bottom-up testing is used with bottom-up model development. In bottom-up
development, model construction starts with the simulation’s routines at the base level,
i.e., the ones that cannot be decomposed further, and culminates with the submodels at
the highest level. As each routine is completed, it is tested thoroughly. When routines
with the same parent, or submodel, have been developed and tested, the routines are
integrated and their integration is tested. This process is repeated until all submodels and
the model as a whole have been integrated and tested. The integration of completed
submodels need not wait for all submodels at the same level to be completed. Submodel
integration and testing can be, and often is, performed incrementally (Sommerville, 1996).

Some of the advantages of bottom-up testing are (a) it encourages extensive testing at the
routine and submodel levels; (b) because most well-structured models consist of a
hierarchy of submodels, much may be gained by bottom-up testing; (c) the smaller the
submodels and the more cohesion within the model, the easier and more complete its
testing will be; and (d) it is particularly attractive for testing distributed models and
simulations.

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

 4-16

Major disadvantages of bottom-up testing include (a) individual submodel testing requires
drivers, more commonly called test harnesses, which simulate the calling of the submodel
and passing test data necessary to execute the submodel; (b) developing harnesses for
every submodel can be quite complex and difficult; (c) the harnesses may themselves
contain errors; and (d) bottom-up testing faces the same cost and complexity problems as
does top-down testing (see Section 4.1.3.26).

4.1.3.6 Comparison Testing

Comparison testing (also known as back-to-back testing) may be used when more than
one version of a model or simulation representing the same system is available for testing
(Pressman, 1996; Sommerville, 1996). For example, different simulations may have been
developed by the different Services to simulate the same military combat aircraft. (The
development of the High-Level Architecture (HLA), however, is intended to reduce
greatly such redundant model development in favor of fewer simulations at less cost to
DoD.) All simulations built to represent exactly the same system are run with the same
input data and the model outputs are compared. Differences in the outputs reveal
problems with model accuracy. The major disadvantage to this technique is the lack of
information that generally exists about the validity of the other models. If two models
both were written with a specific, unnoticed error in the code, the results might agree but
would still be invalid.

4.1.3.7 Compliance Testing

Compliance testing compares the simulation to required security and performance
standards. These techniques are particularly useful for testing federations of distributed
and interactive models and simulations. Compliance testing methods for HLA compliance
have been developed and are available from DMSO.

Authorization testing tests how accurately different levels of security access
authorization are implemented in the simulation and how properly they comply with
established rules and regulations. The test can be conducted by attempting to execute a
classified model within a federation or by using classified input data to run a simulation
without proper authorization (Perry, 1995).

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

 4-17

Performance testing simply tests whether all performance characteristics are measured
and evaluated with sufficient accuracy and if all established performance requirements are
satisfied (Perry, 1995).

Security testing tests whether all security procedures are implemented correctly and
properly. For example, penetrating the simulation while it is running and breaking into
classified components such as secure databases can be attempted. Security testing
evaluates the adequacy of protective procedures and countermeasures (Perry, 1995).

Standards testing substantiates that the M&S application is developed with respect to
the required standards, procedures, and guidelines.

4.1.3.8 Debugging

Debugging is an iterative process that uncovers errors or misconceptions that cause the
model’s failure and defines and carries out the model changes that correct the errors. This
iterative process consists of four steps. In Step 1, the model is tested, revealing the
existence of errors (bugs). Given the errors detected, the cause of each error is determined
in Step 2. In Step 3, the model changes necessary to correct the detected errors are
identified and are carried out in Step 4. Step 1 is re-executed immediately after Step 4 to
ensure successful modification, because a change correcting an error may create another
one. This iterative process continues until no errors are identified in Step 1 after sufficient
testing (Dunn, 1987).

4.1.3.9 Execution Testing

Execution testing consists of monitoring, profiling, and tracing techniques. These
techniques collect and analyze execution behavior data to reveal model representation
errors.

Execution monitoring reveals errors by examining low-level information about activities
and events that take place during model execution. It requires the instrumentation of a
model or simulation to gather data to provide activity- or event-oriented information
about the model’s dynamic behavior. For example, the model in Figure 4-2 can be
instrumented to monitor the arrivals and departures of aircraft within a particular city,
and the results can be compared with the official airline guide to judge model validity. The
model also can be instrumented to provide other low-level information such as the number

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

 4-18

of late arrivals, the average passenger waiting time at the airport, and the average flight
time between two locations.

Execution profiling reveals errors by examining high-level information (profiles) about
activities and events that take place during model execution. It requires the
instrumentation of an executable model to gather data to present profiles about the
model’s dynamic behavior. For example, the model in Figure 4-2 can be instrumented to
produce histograms of aircraft departure times, arrival times, and passenger check-out
times at an airport.

Execution tracing reveals errors by reviewing the line-by-line execution of a simulation.
It requires the instrumentation of an executable model to trace the model’s line-by-line
dynamic behavior. The model in Figure 4-2 can be instrumented to record all aircraft
arrival times at a particular airport. Then, the trace data can be compared with the official
airline guide to assess model validity.

The major disadvantage of the tracing technique is that execution of the instrumented
model may produce a large volume of trace data too complex to analyze. To overcome
this problem, the trace data can be stored in a data base and the modeler can analyze it
using a query language (Fairley, 1975, 1976).

4.1.3.10 Fault/Failure Insertion Testing

This technique inserts a fault (incorrect model component) or a failure (incorrect behavior
of a model component) into the model and observes whether the model produces the
invalid behavior as expected. Unexplained behavior may reveal errors in model
representation.

4.1.3.11 Field Testing

Field testing places the model in an operational situation and collects as much information
as possible for model validation. It is especially useful for validating models of military
combat systems. Field testing conducted as part of the test and evaluation process is
particularly important within DoD system acquisition. It is a major element of VV&A
conducted during the development of new weapons systems and platforms. Although it is
usually difficult, expensive, and sometimes impossible to devise meaningful field tests for
complex systems, their use wherever possible helps both the project team and decision

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

 4-19

makers develop confidence in the model (Shannon, 1975; Van Horn, 1971). The greatest
disadvantage of field testing is the lack of adequate test resources to produce statistically
significant results. Often, simulation runs augment live test data in the development and
decision processes.

4.1.3.12 Functional Testing

Functional testing (also called black-box testing) assesses the accuracy of model input-
output transformation. It is applied by feeding inputs (test data) to the model and
evaluating the accuracy of the corresponding outputs.

It is virtually impossible to test all input-output transformation paths for a reasonably
large and complex simulation, because the number of those paths could be in the millions.
Therefore, the objective of functional testing is to increase confidence in model input-
output transformation accuracy as much as possible rather than to claim absolute
correctness.

The generation of test data is a crucially important but very difficult task. The law of
large numbers does not apply here. Successfully testing the model under 1,000 input
values (test data) does not imply high confidence in model input-output transformation
accuracy just because of the large number. Instead, the number 1,000 should be compared
with the number of allowable input values to determine the percentage of the model input
domain that is covered in testing. The more the model input domain is covered in testing,
the more confidence is gained in the accuracy of the model input-output transformation
(Howden, 1980; Myers, 1979).

4.1.3.13 Graphical Comparison

Graphical comparison is a subjective, inelegant, and heuristic, yet quite practical
approach, especially useful as a preliminary step to model V&V. The graphs of values of
model variables over time are compared with the graphs of values of system variables to
investigate characteristics such as similarities in periodicities, skewness, number, and
location of inflection points; logarithmic rise and linearity; phase shift; trend lines; and
exponential growth constants (Cohen and Cyert, 1961; Forrester, 1961; Miller, 1975;
Wright, 1972).

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

 4-20

4.1.3.14 Interface Testing

Interface testing (also known as integration testing) tests the data, model, and user
interfaces. Interface testing is more rigorous than the interface analysis discussed in
Section 4.1.2.5.

Data interface testing assesses the accuracy of data entered into the model or derived
from the model during execution. All data interfaces are examined to substantiate that all
aspects of data input and output are correct. This form of testing is particularly
important for those simulations in which the inputs are read from a data base or the
results are stored in a data base for later analysis. The model’s interface to the data base is
examined to ensure correct importing and exporting of data (Miller et al., 1995). Data
interface testing is key to the relationship between the VV&A effort and the
corresponding Verification, Validation, and Certification (VV&C) of data effort.

Model interface testing detects model representation errors created as a result of
submodel-to-submodel or federate-to-federate interface errors or invalid assumptions
about the interfaces. It is essential that each submodel within a model or model (federate)
within a federation is tested individually and found to be sufficiently accurate before
model interface testing begins. (Recall Principle 6 from Chapter 2!)

This form of testing deals with how well the submodels (or federates) are integrated with
each other and is particularly useful for object-oriented and distributed simulations. Under
the object-oriented paradigm, objects (a) are created with public and private interfaces, (b)
interface with other objects through message passing, (c) are reused with their interfaces,
and (d) inherit the interfaces and services of other objects.

Model interface testing assesses the accuracy of four types of interfaces, as identified by
Sommerville (1996):

1. Parameter interfaces that pass data or function references from one object to another

2. Shared memory interfaces that enable objects to share a block of memory in which
data are placed by one object and from which they are retrieved by other objects

3. Procedural interfaces that implement the concept of encapsulation under the object-
oriented paradigm—an object provides a set of services (procedures) that can be used
by other objects and hides (encapsulates) the way a service is provided from the
outside world

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

 4-21

4. Message-passing interfaces that enable an object to request the service of another
object through message passing

Sommerville (1996) classifies interface errors into three categories:

1. Interface misuse occurs when an object calls another and incorrectly uses its interface.
For objects with parameter interfaces, a parameter may be of the wrong type or may
be passed in the wrong order, or the wrong number of parameters may be passed.

2. Interface misunderstanding occurs when object A calls object B without satisfying the
underlying assumptions of object B’s interface. For example, object A calls a binary
search routine by passing an unordered list to be searched, when in fact the binary
algorithm assumes that the list is already sorted.

3. Timing errors occur in real-time, parallel, and distributed simulations that use a shared
memory or a message-passing interface.

User interface testing detects model representation errors created as a result of user-
model interface errors or invalid assumptions about this interface. This form of testing is
particularly important for testing human-in-the-loop and interactive simulations.

User interface testing assesses the interactions between the user and the model. The user
interface is examined from low-level ergonomic aspects to instrumentation and controls
and from human factors to global considerations of usability and appropriateness to
identify potential errors (Miller et al., 1995; Pressman, 1996; Schach, 1996).

4.1.3.15 Object-Flow Testing

Object-flow testing is similar to transaction-flow testing (Beizer, 1990) and thread testing
(Sommerville, 1996). It assesses model accuracy by exploring the life cycle of an object
during model execution. For example, a dynamic object (aircraft) can be marked for testing
in the visual simulation environment for the model shown in Figure 4-2. Every time the
dynamic object enters into a subroutine, the visualization of that subroutine is displayed.
Every time the dynamic object interacts with another object within the subroutine, the
interaction is highlighted. Examination of the way a dynamic object flows through the
activities and processes and interacts with its environment during its lifetime in model
execution is extremely useful for identifying errors in model behavior.

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

 4-22

4.1.3.16 Partition Testing

Partition testing examines the model with the test data generated by analyzing the model’s
functional representations or partitions. It is accomplished by (a) decomposing both the
model specification and its implementation into functional representations (partitions),
(b) comparing the elements and prescribed functionality of each partition specification
with the elements and actual functionality of the corresponding partition as it has been
implemented in code, (c) deriving test data to test the functional behavior of each partition
extensively, and (d) testing the model with the generated test data.

The model is decomposed into functional representations (partitions) through the use of
symbolic evaluation techniques that maintain algebraic expressions of model elements and
show model execution paths. These functional representations are the model
computations. Two computations are equivalent if they are defined for the same subset of
the input domain that causes a set of model paths to be executed and if the result of the
computations is the same for each element within the subset of the input domain
(Howden, 1976). Standard proof techniques show equivalence over a domain. When
equivalence cannot be shown, partition testing is performed to locate errors or, as
Richardson and Clarke (1985, p. 1488) state, to “increase confidence in the equality of the
computations due to the lack of error manifestation.” By involving both the model’s
specification and its implementation, partition testing can provide more comprehensive
test data coverage than other test data generation techniques.

4.1.3.17 Predictive Validation

Predictive validation requires past input and output data from the system being modeled.
The model is driven by past system input data and its forecasts are compared with the
corresponding past system output data to test the predictive ability of the model
(Emshoff and Sisson, 1970). Test data from test and evaluation uses of M&S are one
example of how this technique is often used. Predictive validation also can evolve into the
Model-Test-Model methodology, which uses the test data to make subsequent
improvements to the model.

4.1.3.18 Product Testing

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

 4-23

Product testing is conducted by the model or simulation developer after all submodels are
successfully integrated (as demonstrated by the interface testing) and before the
acceptance testing is performed by the model or simulation application sponsor or
proponent. No contractor wants the product (model) to fail the acceptance test. Product
testing serves to prepare for the acceptance testing. As such, the developer’s quality
control group must test the product and make sure that all requirements specified in the
legal contract are satisfied before delivering the model to the model or simulation
application sponsor (Schach, 1996).

As dictated by Principle 6 in Chapter 2, successfully testing each submodel or federate
does not imply overall model or federation credibility. Interface testing and product
testing are two techniques that must be performed to substantiate overall model
credibility.

4.1.3.19 Regression Testing

Regression testing investigates the relationships between variables. In particular, it
ensures that correcting errors and making changes in the model do not create other errors
and adverse side effects. Usually the modified model is retested with the test data sets
used previously. Successful regression testing requires the retention and management of
old test data sets throughout the model development life cycle.

4.1.3.20 Sensitivity Analysis

Sensitivity analysis is performed by systematically changing the values of model input
variables and parameters over some range of interest and observing the effect upon model
behavior (Shannon, 1975). Unexpected effects may reveal invalidity. The input values
also can be changed to induce errors to determine the sensitivity of model behavior to
such errors. Sensitivity analysis can identify those input variables and parameters to
which model behavior is very sensitive. Model validity then can be enhanced by ensuring
that those values are specified with sufficient accuracy (Hermann, 1967; Miller, 1974a,b;
Van Horn, 1971).

4.1.3.21 Special Input Testing

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

 4-24

Special input testing consists of eight types of tests: boundary value, equivalence
partitioning, extreme input, invalid input, real-time input, self-driven input, stress, and
trace-driven input techniques. These techniques assess model accuracy by subjecting the
model to a variety of inputs.

Boundary value testing examines the model’s accuracy by using test cases on the
boundaries of input equivalence classes. A model's input domain usually can be divided
into classes of input data (known as equivalence classes) that cause the model to function
the same way. For example, a traffic intersection model might specify the probability of
left turn in a three-way turning lane as 0.2, the probability of right turn as 0.35, and the
probability of traveling straight as 0.45. This probabilistic branching can be implemented
by using a uniform random-number generator that produces numbers in the range 0 ≤ rn ≤
1. Thus, three equivalence classes are identified: 0 ≤ rn ≤ 0.2, 0.2 < rn ≤ 0.55, and 0.55 <
rn ≤ 1. Each test case from within a given equivalence class has the same effect on the
model behavior, i.e., produces the same direction of turn.

In boundary analysis, test cases are generated just within, on top of, and outside of the
equivalence classes (Myers, 1979). In the example above, the following test cases are
selected for the left turn: 0.0, ±0.000001, 0.199999, 0.2, and 0.200001. In addition to
generating test data on the basis of input equivalence classes, it also is useful to generate
test data that will cause the model to produce values on the boundaries of output
equivalence classes (Myers, 1979). The underlying rationale for this technique as a whole
is that the most error-prone test cases lie along the boundaries (Ould and Unwin, 1986).
Notice that invalid test cases used in the example will cause the model execution to fail;
however, this failure should be as expected and meaningfully documented.

Equivalence partitioning testing partitions the model input domain into equivalence
classes in such a manner that a test of a representative value from a class is assumed to be
a test of all values in that class (Miller et al., 1995; Perry, 1995; Pressman, 1996;
Sommerville, 1996).

Extreme input testing is conducted by running the model or simulation with only
minimum values, maximum values, or an arbitrary mixture of minimum and maximum
values for the model input variables. For example, this technique allows the model user to
test a proposed weapon system against extreme conditions that may not be obtainable in
actual system testing.

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

 4-25

Invalid input testing is performed by running the model or simulation under incorrect
input data to determine whether the model behaves as expected. Unexplained behavior
may reveal errors in model representations.

Real-time input testing is particularly important for assessing the accuracy of
simulations built to represent embedded real-time systems. For example, different design
strategies of a real-time software system built to control the operations of a
manufacturing system can be studied using M&S. The model that represents the software
design can be tested by running it with real-time input data that can be collected from the
existing manufacturing system. Using real-time input data collected from a real system is
particularly important to capture the timing relationships and correlations between input
data points.

Self-driven input testing is conducted by running the model or simulation under input
data randomly sampled from probabilistic models representing random phenomena in a
real or future system. A probability distribution (e.g., exponential, gamma, weibull) can be
fit to collected data, or triangular and beta probability distributions can be used in the
absence of data, to model random input conditions (Banks et al., 1996; Law and Kelton,
1991). Then, using random variate generation techniques, random values can be sampled
from the probabilistic models to test the model validity under a set of observed or
speculated random input conditions.

Stress testing tests the model’s validity under extreme workload conditions. This is
usually accomplished by increasing the congestion in the model. For example, the model
in Figure 4-2 can be stress tested by increasing the number of flights between two
locations to an extremely high value. Such an increase in workload may create unexpected
high congestion in the model. Under stress testing, the model may exhibit invalid behavior;
however, such behavior should be as expected and meaningfully documented (Dunn,
1987; Myers, 1979).

Trace-driven input testing is conducted by running the model or simulation under input
trace data collected from a real system. For example, a system can be instrumented with
monitors that collect data by tracing all system events. The raw trace data then are refined
to produce the real input data for testing the model or simulation.

4.1.3.22 Statistical Techniques

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

 4-26

Much research has been conducted in applying statistical techniques to model validation.
Table 4-1 presents the statistical techniques proposed for model validation and lists
related references.

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

 4-27

Table 4-1. Statistical Techniques Proposed for Validation

Technique References
Analysis of Variance Naylor and Finger, 1967

Confidence Intervals/Regions Balci and Sargent, 1984; Law and Kelton, 1991; Shannon, 1975

Factor Analysis Cohen and Cyert, 1961

Hotelling’s T2 Tests Balci and Sargent, 1981, 1982a, 1982b, 1983; Shannon, 1975

Multivariate Analysis of Variance
—Standard MANOVA
—Permutation Methods
—Nonparametric Ranking Methods

Garratt, 1974

Nonparametric Goodness-of-Fit Tests
—Kolmogorov-Smirnov Test
—Cramer-Von Mises Test
—Chi-square Test

Gafarian and Walsh, 1969; Naylor and Finger, 1967

Nonparametric Tests of Means
—Mann-Whitney-Wilcoxon Test
—Analysis of Paired Observations

Shannon, 1975

Regression Analysis Aigner, 1972; Cohen and Cyert, 1961; Howrey and Kelejian, 1969

Theil’s Inequality Coefficient Kheir and Holmes, 1978; Rowland and Holmes, 1978; Theil, 1961

Time Series Analysis
—Spectral Analysis Fishman and Kiviat, 1967; Gallant et al., 1974; Howrey and

Kelejian, 1969; Hunt, 1970; Van Horn, 1971; Watts, 1969

—Correlation Analysis

 —Error Analysis

Watts, 1969

Damborg and Fuller, 1976; Tytula, 1978

t-Test Shannon, 1975; Teorey, 1975

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

 4-28

The statistical techniques listed in Table 4-1 require the system being modeled to be
completely observable, i.e., that all data required for model validation can be collected
from the system. The model is validated by using the statistical techniques to compare
the model output data with the corresponding system output data after the model is run
with the same input data as the real system. Model and system outputs are compared
using multivariate statistical techniques to capture the correlation among the output
variables. A recommended validation procedure based on the use of simultaneous
confidence intervals follows.

Example 4-1. A Validation Procedure Using Simultaneous Confidence Intervals.

The behavioral accuracy (validity) of a simulation with multiple outputs
can be expressed in terms of the differences between the corresponding
model and system output variables when the model is run with the same
input data and operational conditions that drive the real system. The range
of accuracy of the jth model output variable can be represented by the jth
confidence interval (c.i.) for the differences between the means of the jth
model and system output variables. The simultaneous confidence intervals
(s.c.i.) formed by these confidence intervals are called the model range of
accuracy (m.r.a.) (Balci and Sargent, 1984).

Assume that there are k output variables from the model and k output
variables from the system as shown in Figure 4.3. Let

() []m
1
m

2
m

k
m, ,

′
= ..., and () []s

1
s

2
s

k
s′

= , ,..., be the k dimensional

vectors of the population means of the model and system output variables,
respectively. Basically, there are three approaches for constructing the s.c.i
to express the m.r.a. for the mean behavior.

